Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 2(1): e1500654, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26767193

RESUMO

A significant part of the intrinsic brightness variations in cool stars of low and intermediate mass arises from surface convection (seen as granulation) and acoustic oscillations (p-mode pulsations). The characteristics of these phenomena are largely determined by the stars' surface gravity (g). Detailed photometric measurements of either signal can yield an accurate value of g. However, even with ultraprecise photometry from NASA's Kepler mission, many stars are too faint for current methods or only moderate accuracy can be achieved in a limited range of stellar evolutionary stages. This means that many of the stars in the Kepler sample, including exoplanet hosts, are not sufficiently characterized to fully describe the sample and exoplanet properties. We present a novel way to measure surface gravities with accuracies of about 4%. Our technique exploits the tight relation between g and the characteristic time scale of the combined granulation and p-mode oscillation signal. It is applicable to all stars with a convective envelope, including active stars. It can measure g in stars for which no other analysis is now possible. Because it depends on the time scale (and no other properties) of the signal, our technique is largely independent of the type of measurement (for example, photometry or radial velocity measurements) and the calibration of the instrumentation used. However, the oscillation signal must be temporally resolved; thus, it cannot be applied to dwarf stars observed by Kepler in its long-cadence mode.


Assuntos
Astronomia/métodos , Gravitação , Astros Celestes , Meio Ambiente Extraterreno
2.
Nature ; 430(6995): 51-3, 2004 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-15229593

RESUMO

Pressure-driven (p-mode) oscillations at the surface of the Sun, resulting from sound waves travelling through the solar interior, are a powerful probe of solar structure, just as seismology can reveal details about the interior of the Earth. Astronomers have hoped to exploit p-mode asteroseismology in Sun-like stars to test detailed models of stellar structure and evolution, but the observations are extremely difficult. The bright star Procyon has been considered one of the best candidates for asteroseismology, on the basis of models and previous reports of p-modes detected in ground-based spectroscopy. Here we present a search for p-modes in 32 days of nearly continuous photometric satellite-based observations of Procyon. If there are p-modes in Procyon, they must have lifetimes less than 2-3 days and/or peak amplitudes <15 parts per million, which defy expectations from the Sun's oscillations and previous theoretical predictions. Target selection for future planned asteroseismology space missions may need to be reconsidered, as will the theory of stellar oscillations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...